HemTeknikområdenOm företagetProjektPublikationerKontakta ossSökLogga inKusinträffIn EnglishPå svenska

En fullständig lista över publikationer hittar du här

GRVs medarbetare deltar aktivt i olika forsknings- och utvecklingsprojekt och medverkar som föredragshållare vid nationella och internationella konferenser. På denna sida kan du ladda ner tekniska och vetenskapliga artiklar. Ta gärna kontakt med oss om du önskar mer information.

   
 

Wersäll, C., Massarsch, K. R. och Bodare, A. (2009)
Planering och Övervakning av
Sprängningsarbeten i Bebyggda
Områden
. Bygg och Teknik, vol. 101 nr 1.
Ladda ner

SAMMANFATTNING
Infrastrukturprojekt i tätbebyggda områden kräver ofta omfattande sprängningsarbeten, där vibrationsnivåer många gånger styr hela projektets ekonomi och tidplan. Sprängning projekteras och utförs ofta med ledning av praktisk erfarenhet från tidigare projekt, men skulle kunna göras mer effektiv genom bättre förståelse av vågutbredningen i berg och jordlager. En annan viktig frågeställning är risken för skador, som kan uppstå vid dynamisk påverkan i byggnader eller undermarksanläggningar, såsom tunnlar. I många fall används riktvärden enligt svensk sprängstandard, som är framtagen för konventionella vibrationsproblem. Till skillnad från exempelvis tågtrafik eller anläggningsarbeten, har endast begränsade forskningsinsatser hittills ägnats åt sprängningsproblematiken. I artikeln redovisas nya kunskaper om vågutbredningen och dynamisk samverkan mellan sprängningsinducerade vibrationer och tunnlar i berg. Detta kan utnyttjas för säkrare och kostnadseffektiv sprängning i tätbebyggda områden.

 
 
 

 

Massarsch, K. R. and Fellenius, B. H. (2008)
Ground Vibrations induced by Impact Pile Driving. Keynote Lecture, International Conference on Case Histories in Geotechnical Engineering. Arlington, 2008.
Ladda ner

ABSTRACT
The importance of vibration problems induced by pile driving is addressed and guidelines for establishing limiting vibration levels with respect to buildings with different foundation conditions are presented. Basic concepts of pile dynamics and stress wave measurements, which are widely used for the determination of driving resistance and bearing capacity of impact-driven piles, provide important information about ground vibration caused by pile penetration. Dynamic hammer properties and geometry as well as the driving process are important for ground vibration emission from the pile. It is shown that the energy-based, empirical approach, which is still widely used by practicing engineers, is too crude for reliable analysis of ground vibrations and can even be misleading. The main limitations of the energy approach are the assumption that driving energy governs ground vibrations, the omission of geotechnical conditions and soil resistance, and the uncertainty with regard to input values.

Three types of ground waves are considered during pile driving: spherical waves emitted from the pile toe, cylindrical waves propagating laterally from the pile shaft, and surface waves, which are generated by wave refraction at the ground surface at a critical distance from the pile. These three wave types depend on the velocity-dependent soil resistance. The most important factor for analyzing ground vibrations is the impedance of each system component, i.e., the pile hammer, the pile, and the soil along the shaft and at the pile toe. Guidance based on geotechnical conditions is given as to the selection of appropriate impedance values for different soil types.

A theoretical concept is presented, based on a simplified model, considering the strain-softening effect on wave velocity in the soil, which makes it possible to predict the attenuation of spherical and surface waves and of cylindrical waves generated at the pile toe and the pile shaft, respectively. The concept is applied to define k-values, which have been used in empirically eveloped models and correlated to type of wave and soil properties.

An important aspect of the proposed prediction model is the introduction of the vibration transmission efficacy, a factor which limits the amount of vibration force that can be transmitted along the pile-soil interface (toe and shaft). Results from detailed vibration measurements are compared to values calculated from the proposed model. The comparison is very good and suggests that the new model captures the important aspects of ground vibration during penetration of the pile into different soil layers. Finally, based on the presented model, factors influencing the emission of ground vibrations during impact pile driving are discussed.

 
 
     
Wersäll, C. (2008)
Blast-Induced Vibrations and Stress Field Changes around Circular Tunnels. Master of Science thesis ISSN 1652-599X, Division of Soil and Rock Mechanics, Royal Institute of Technology.
Ladda ner

ABSTRACT
Blast-induced vibrations is a common problem in urban areas during rock excavation and can cause damage to existing structures. Risk management of this problem is regulated in various standards for assessment of damage in buildings and other structures above ground. For underground structures, however, there exists no proper method for damage assessment which is why guidance levels intended for on-ground structures are implemented below ground even though the damage criteria are different. New methods for determining these criteria are therefore necessary. The aim of this study is to propose a more refined concept of blast-induced vibration analysis which can be applied in that process.

The problem of dynamic interaction of waves with underground structures is idealized to a cylindrical tunnel in an infinite elastic material (with no material damping) subjected to a plane sinusoidal wave. The main focus is on the compressional wave since this is the predominant type in blast-induced vibrations. However, the interaction of a shear wave is also evaluated briefly for understanding due to its simpler nature.

The dynamic response of a circular tunnel was investigated by mathematical analysis and numerical simulation using the three-dimensional distinct element software 3DEC. It was found that a cylindrical cavity shows resonance phenomena when the wavelength of the P-wave is equal to the circumference of the cavity or when the wavelength of the SH-wave is equal to the diameter. This implies that there is a risk of vibration amplification due to resonance during blasting since the dominating frequency of the vibrations is often of the same order of magnitude as the resonance frequency. Furthermore, the tangential stresses caused by the propagating wave are not negligible and might cause damage to the tunnel. The maximum tangential stress can be approximated by a simple relationship.


Massarsch, K. R., Jonsson, M. och Wersäll, C. (2008)
Riskhantering vid Sprängningsarbeten. Bygg och Teknik, 1/08.
Ladda ner



Massarsch, K. R. and Topolnicki, M. (2005)
Regional Report: European Practice of Soil Mixing Technology.
Ladda ner



Massarsch, K. R. (2005)
Deformation Properties of Stabilized Soil Columns. International Conference on Deep Mixing, Stockholm, 23-25 May, 2005.
Ladda ner



Massarsch, K. R. (2005)
Vibration Isolation using Gas-filled Cushions. Keynote Lecture, Soil Dynamics Symposium to Honor Prof. Richard D. Woods. Geo-Frontiers, January 24 – 26, 2005, Austin, Texas.
Ladda ner



Massarsch, K. R. (2004)
Deformation properties of fine-grained soils from seismic tests. Keynote lecture, International Conference on Site Characterization, ISC’2, 19 – 22 Sept. 2004, Porto.
Ladda ner



Bodare, A.
Non Destructive Test Methods of Stone and Rock.
Ladda ner


Publikationer
Geo Risk & Vibration AB | Solna Torg 13, 3tr | SE171 45 SOLNA | Sweden
Provided by Webforum