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ABSTRACT: Impact pile driving is often restricted by regulations of ground vibrations that affect 
surrounding structures, installations and residents. While previous studies have focused on prediction of 
vibration amplitude, this paper studies the frequency content. Vibrations can be particularly significant when 
the pile penetrates stiff surface layers. This phase is essentially analogous to impact of a falling weight on a 
steel plate, placed on the ground surface. Results from falling weight tests are evaluated with regard to 
frequency content of ground vibrations. Comparison of test results with theoretical models shows that the 
most important factors influencing dominating frequency of vertical ground vibration are pile dimensions, 
pile mass, and hammer mass. An often-neglected aspect is the dynamic stiffness of the soil immediately 
below the plate/pile toe while the influence of deeper soil layers on frequency content appears to be 
negligible. Soil modulus and wave speed are strain-dependent and the strain softening effect must be taken 
into consideration in the analysis. Results of field tests are compared with theory. The analogy between 
falling weight tests and pile driving, and its limitations are discussed.  
 
 
1 INTRODUCTION 

Although impact pile driving is a cost-effective 
foundation method, its efficient application in 
urbanized areas is often restricted by environmental 
regulations and, in particular, by limitations based 
on permissible ground vibrations. In spite of its wide 
application, relatively little effort has been devoted 
to development of practically applicable concepts to 
predict ground vibrations. Massarsch and Fellenius 
(2008) proposed a concept, which makes it possible 
to assess vibrations that are generated along the shaft 
and at the pile toe during pile penetration. However, 
this concept does not consider how the pile driving 
affects frequency content. One important aspect, 
which can be addressed in terms of frequency, is 
vibration amplification occurring in soil layers or 
buildings adjacent to the pile installation location. 
When the vibration frequency is in a certain range 
(commonly 10 to 20 Hz), it can coincide with 
resonance frequencies of building floors or structural 
elements. It is not uncommon that vertical and/or 
horizontal vibrations are amplified in buildings by 
many times (Athanasopoulos and Pelekis, 2000; Xia  

et al., 2005). This aspect is taken into account in 
several vibration standards, requiring that the project 
engineer assesses the risk of vibration amplification. 

The dominating frequency caused by impact pile 
driving depends on the characteristics of the 
impacting system (pile, hammer etc.) as well as on 
soil properties. Figure 1 illustrates that the transfer 
of vibrations from the hammer (A), through the pile 
(B) and into the surrounding soil (C) is a complex 
process. Experience suggests that ground vibrations 
can be high in particular during the initial driving 
phase, when the pile penetrates a stiff soil layer or 
fill close to the ground surface. During this phase, 
the distance between the vibration source and 
adjoining buildings is shortest. The frequency 
content of ground vibrations caused by surface 
impact is analyzed theoretically and the significance 
of different driving parameters is discussed. Results 
from falling weight tests are compared to simulation 
of a simplified driving system, consisting of a mass 
impacting on a stiff plate/pile located at the ground 
surface. The results of field tests are compared with 
theoretical predictions. The consequences of strain 
softening on soil stiffness are addressed. 
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  Figure 1. Process of energy transfer during pile driving, after 
Massarsch (2005). 

2 DYNAMIC SOIL RESISTANCE 

During pile penetration the shear modulus at large 
strain governs the dynamic soil resistance. This 
modulus is significantly lower than the small strain 
modulus measured by seismic tests. Figure 2 shows 
the shear modulus at different stress levels. The 
shear modulus at very low strain - typically less than 
10-5 (0.001 %) - is denoted G0 but decreases with 
increasing stress level. At 50 % of the failure load, 
the shear modulus is denoted G50 and at failure Gf. 
During pile penetration, soil at the pile-soil interface 
(toe) is in failure and the shear modulus Gf should be 
used, rather than the elastic shear modulus, G0. This 
important aspect if often neglected and can lead to 
erroneous conclusions regarding dynamic soil 
resistance. 
 

 
Figure 2. Shear stress-shear strain relationship for soil, after 
Massarsch (2004). 
 

The shear modulus, G, can be calculated if the 
shear wave speed, cS, and the bulk density of the soil 
soil are known, 
 

2
S soilG c         (1) 

 
Ground vibrations due to impact pile driving are 
caused by the velocity-dependent soil resistance 
acting along the pile shaft and at the pile toe, 
(Massarsch and Fellenius 2008). The dynamic 
portion of the total driving resistance at the pile 
toe, RT, which is of primary interest for a pile 
impacting at the ground surface, can be calculated 
from 
 

2 P
T PR Z v         (2) 

 
where ZP is soil impedance for P-waves below the 
pile toe and vP is particle velocity in the pile. 
Knowledge of the P-wave soil impedance, ZP, is 
important for determination of the dynamic 
resistance at the pile toe-soil interface. The soil 
impedance, ZP, is defined by 
 

P
P P soilZ A c         (3) 

 
where AP is cross section area of the pile toe and cP 
is P-wave speed in the soil. In practice it is often 
more convenient to determine cS and to calculate cP 
from the following relationship 
 

2 2
1 2P Sc c 







        (4) 

 
where  is Poisson’s ratio, which varies typically 
between 0.3 (drained conditions) and 0.5 (undrained 
conditions). Note that cP depends on the degree of 
saturation of the ground water. In loose to medium 
dense, water-saturated soils, at undrained conditions, 
the compression wave speed corresponds to that in 
water (approximately 1450 m/s) and is of course 
independent of strain level. 

In the case of pile penetration, the soil at the pile 
toe undergoes plastic deformation. The 
strain-dependent wave speed c* can be determined 
from the elastic shear wave speed, cS, by applying a 
wave speed reduction factor, Rc, 

 
*

c Sc R c        (5) 
 

Figure 3 shows the variation of the wave speed 
reduction factor Rc as a function of plasticity index, 
PI. The reduction becomes more significant as PI 
decreases. At failure, assuming a shear strain level 
of 1 %, cS is reduced to approximately 15 % of the 
elastic speed in silty and sandy soils. When the soil 
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fails, no additional resistance can be mobilized and 
this implies an upper limit of vibration intensity that 
can be transferred at the pile-soil interface. This 
effect is denoted “vibration transmission efficacy”, 
(Massarsch and Fellenius, 2008). 
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Figure 3. Reduction of cS as a function of PI for cohesive soils 
for different shear strain levels, based on Massarsch (2004). 

 
The soil immediately below the vibration source 

is in a plastic state. The frequency content of 
vibrations at the source depends on the dynamic 
response (i.e. shear wave speed) of the soil in this 
zone. In the present paper, this aspect is considered 
by calibrating calculations to field measurements, 
which confirm a reduced shear wave speed. With 
increasing distance, shear strain decreases and thus 
shear wave speed increases. However, this change in 
wave speed does not affect the frequency content of 
propagating vibrations as it is the frequencies 
generated at the source that propagate through the 
soil. 

3 FALLING WEIGHT TESTS 

As a part of a project to investigate ground 
conditions by seismic methods of an area with 
heterogeneous ground conditions, falling weight 
tests (SASW method, among others) were performed 
using a purpose-built 1000 kg steel mass, dropped 
on a steel impact plate (Figure 4). Rubber pads of 
varying thickness were placed between the plate and 
the weight to study a possible damping effect. These 
measurements were used to investigate the effect of 
ground conditions on impact-induced ground 
vibration frequency. 

3.1 Ground conditions 

Ground conditions within the test area were variable 
and the influence of dynamic soil properties on 
dynamic response and frequency content could 
therefore be studied in detail. Conditions varied 
from 3 m of stiff glacial till on bedrock in one part 
of the test area to soft, very compressible clay, up to 

20 m thick, elsewhere. A surface layer of 2-3 m of 
rockfill was placed over the entire area. 
 

 
Figure 4. Falling weight tests. 

 

3.2 Test setup 
Several drops were made at 33 locations using 
varying drop height and thickness of rubber padding. 
Some drops were also made without the impact plate. 
The standard setup was 0.5 m drop height and 50 
mm rubber pads. Signals were averaged in 
frequency domain over several drops to eliminate 
noise.  Both accelerometers and geophones were 
used for measurement, placed in sand-filled pits to 
assure good coupling with the ground. 
Measurements presented in this paper consist of 
vertical velocity or acceleration recorded at a 
horizontal distance of approximately 5 m from the 
impact point. 

3.3 Results 

All average velocity spectra from tests using 
geophones according to the standard test setup are 
shown in Figure 5. The amplitudes are influenced by 
test conditions with a few curves having 
considerably larger amplitudes. This variation is 
probably also influenced by slight variation in the 
distance between impact point and transducer 
location. The variation of vibration amplitude is not 
of primary interest for this paper. Although vibration 
amplitudes vary at different tests, it is interesting to 
note that dominating frequencies fall within a 
relatively narrow range (generally 25-30 Hz), 
regardless of geotechnical conditions and variation 
of soil stiffness below the surface layer of rockfill. 
Thus, vibration frequency appears to be less 
influenced by test conditions than vibration 
amplitude. 
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Several tests were also performed to investigate 
the variation of specific test parameters. Figure 6 
shows average spectra for two different drop heights, 
0.5 and 0.9 m, and Figure 7 shows the influence of 
rubber pad thickness (keeping all other parameters 
constant). There is a remarkable similarity between 
the different spectra, suggesting that the varied 
parameters do not affect the frequency content of 
vertical ground vibrations. In Figure 8, standard 
drops of 0.5 m are compared with 1 m drops without 
using the impact plate. Also here, the difference in 
measured frequency content is negligible. 
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Figure 5. Average velocity spectra at all drop points. 
 

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Frequency (Hz)

S
pe

ct
ra

l d
en

si
ty

 (m
/s2  / 

H
z)

 

 
0.5 m
0.9 m

 
Figure 6. Influence of drop height. 

4 LUMPED-PARAMETER MODEL 

Surface impact has been modeled using a 
lumped-parameter SDOF model. Three different 
versions of the model have been analyzed: (a) 
falling weight system, (c) pile-hammer system and 
(b) intermediate model, see Figure 9. The dynamic 

response of the ground can be derived by 
considering impact and soil interaction separately. 

The three models are similar, with varying 
geometries of system components. Models (a) and 
(b) consider the impact of a falling weight and of a 
pile on a plate supported by ground with stiffness 
and damping. Model (c) simulates a hammer 
impacting on a pile supported by the ground. 
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Figure 7. Influence of rubber pad thickness. 
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Figure 8. Acceleration spectra with and without plate. 

 

4.1 Impact 
When the falling weight impacts the plate, an 
upward propagating wave is induced in the steel 
weight and a downward wave in the plate/pile. The 
time for the wave to travel up and down in the 
weight, plate, or pile is a characteristic time of the 
system and its corresponding frequency. For the 
models analyzed herein, this frequency range is 
600-4200 Hz, which is well above that of interest for 
ground vibrations. The weight, pile, and impact plate 
can therefore be modeled as rigid bodies. 
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Figure 9. The three different SDOF models. 

 
The displacement, u, of the SDOF system is 

described by the differential equation, Eq. 6. 
 

2

2

d u dum c ku mg
dt dt

          (6) 

 
where m is the total mass (m1+m2), c is the damping 
coefficient, k is the spring stiffness and g is the 
gravity acceleration. The initial conditions are that, 
at time t = 0, displacement is zero and velocity is 
some value, v0. The velocity of the falling weight at 
impact is 
 

1 2v gH         (7) 
 
where H is drop height. Using the principle of 
conservation of momentum and assuming elastic 
rebound, the velocity of the plate/pile after impact is 
 

1
0 1

1 2

2mv v
m m




        (8) 

 
where m1 and m2 are the masses of the falling weight 
and the plate/pile, respectively. 

Assuming fully elastic rebound implies a 
coefficient of restitution of unity. In reality, the 
coefficient is slightly lower. Although a more 
representative value would be important for 
determining the vibration amplitude, it is less 
significant for assessing the frequency content. Since 
frequency is of main interest in this paper, elastic 
rebound is considered an acceptable assumption. 

A short duration after rebound, the weight will 
reverse direction and again hit the plate, this time 
with significantly less energy. This is of minor 
importance for the dominating frequencies as 
discussed below. The solution to Equation (6) for the 
initial conditions is 

 

 

 

0

0 0
2 2
0

( ) cos

sin
1

t
d

d

mgu t e t
k

v g mgt
k

 

  
 

    
 

   
  

  (9) 

 
where  is damping ratio, which is the ratio of 
damping coefficient and critical damping coefficient. 
The natural frequency, 0, and the damped natural 
frequency, d, are obtained from 
 

0
k
m

      (10) 

 
2

0 1d           (11) 
 

4.2 Soil interaction 

Soil-plate interaction is considered by using 
interaction parameters that take both the rigid mass 
and the deformable soil into account. According to 
Lysmer and Richart (1966) and Richart et al. (1970), 
the elastic spring stiffness and damping ratio can be 
expressed by 
 





1

4 0rGk        (12) 

 

 
3

040.425
1

r
m





 
 

      (13) 

 
where G is soil shear modulus, r0 is plate radius,  is 
Poisson’s ratio for the soil, and  is soil density.  

4.3 Frequency analysis 

The solution to Equation (6) is of the form 
 

   0 cos( ) sin( )t
d df t e A t B t           (14) 

 
which has the Fourier transform 
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     (15) 

 
Differentiating Equation (9) with respect to time and 
applying Equation (15) results in the velocity 
spectral density 
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     (16) 

 
Equation (16) is used to calculate velocity spectra in 
the following sections. 

4.4 Adjustment for strain level 
As has been discussed above, the wave speed needs 
to be adjusted to take into account the influence of 
strain level. This aspect is of particular importance 
when the applied dynamic force causes the falling 
weight or pile to penetrate into the underlying soil. 
Reducing the shear modulus (i.e. cS) decreases the 
dominating frequency and increases amplitude, cf. 
Equations (10) and (12). By varying cS in the model 
until the dominating frequency coincides with that 
observed in the falling weight tests, an estimation of 
the strain-adjusted (reduced) wave speed is obtained. 
Hence, this method makes it possible to calibrate the 
theoretical model against field tests and measured 
frequencies. 

5 COMPARISON OF FIELD TESTS WITH 
THEORETICAL MODEL 

SASW tests performed in the test area showed that 
the shear wave speed in the 3 m thick surface 
rockfill is about 200-250 m/s over the entire test area. 
Figure 10 shows variation of frequency content for 
different values of cS for model (a) (falling weight). 
At cS=100 m/s, a dominating frequency of 28 Hz is 
obtained, agreeing well with field measurements (cf. 
Figure 5). This frequency corresponds to a wave 
speed reduction factor of RC=0.4–0.5. Hence, 
cS=100 m/s should be used as strain-adjusted shear 
wave speed in rock fill. As illustrated in Figure 10, 
the frequency content strongly depends on cS, and, 
therefore, also the magnitude of strain. This aspect is 
discussed further below. 

5.1 Comparison of models 
Using the adjusted shear wave speed for all three 
models, frequency content according to Figure 11 is 
obtained. Spectral density is plotted in logarithmic 
scale due to the large difference in amplitude. The 
curve for model (a) is calculated by inserting the 
same mass (1000 kg) and diameter (600 mm) as in 
the field experiments and a 20 mm thick plate with 
the same diameter. In model (b), the diameter is 
changed to 200 mm (cf. Figure 9) but the mass of 
the falling weight is the same as in model (a) 
(1000 kg), corresponding to a pile length of 
approximately 4 m. The masses are then 
interchanged in model (c) so that the falling weight 

has the same mass as the plate in the previous model, 
5 kg, and a 1000 kg pile (impact plate). 

Comparing models (a) and (b) in Figure 11, it can 
be seen that decreasing the diameter while keeping 
the mass constant significantly increases amplitude 
and decreases dominating frequency. This is due to a 
drastic decrease in damping, cf. Equation (13). The 
dominating frequencies in models (b) and (c) are 
identical since the total system mass and the 
diameter (hence damping) are the same. There is, 
however, a large difference in amplitude, which is 
due to the difference in momentum (mass times 
velocity) of the falling mass. 
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Figure 10. Calculated velocity spectrum with varying shear 
wave speed. 
 

5.2 Hammer mass 
In the previous example, a 5 kg hammer was used, 
which is an unrealistically low mass for a pile 
hammer. Figure 12 shows influence of hammer 
mass, with a 1000 kg pile having a diameter of 
200 mm. It can be seen that both amplitude and 
dominating frequency are affected. Higher hammer 
mass gives rise to higher amplitude. Dominating 
frequencies converge and range for this case 
between 7 and 17 Hz. The mass of a typical pile 
hammer ranges between 2500 and 4000 kg. In this 
interval, the dominating frequency is relatively 
constant (7-9 Hz). 

5.3 Bouncing 
Directly after impact, the plate will move downward 
with a higher velocity than the hammer. After a 
short time, there will be a second impact and the 
weight will keep bouncing on the plate. The kinetic 
energy is reduced significantly after each impact and 
is considered negligible after the second impact. 
Hence, only the first two impacts are considered. If 
the weight is heavier than the plate, it will also move 
downward after impact. However, if it is lighter, it 

882



will have a velocity directed upward. Bouncing is 
here calculated by a simplified approach, assuming 
that the second impact of a light hammer occurs at 
the same location (same height) as the first impact. 
Bouncing in case of a heavy hammer is not 
considered, because the energy of the second impact 
will be very low compared to the initial impact. 
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Figure 11. Comparison of the three models. 
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Figure 12. Influence of hammer mass on frequency. 
 
The influence of bouncing is shown in Figure 13 

for a 100 kg hammer and in Figure 14 for a 500 kg 
hammer. The pile has a mass of 1000 kg. Bouncing 
has greater influence when the hammer is light 
compared to the pile, owing to the greater rebound 
height. 

6 DISCUSSION AND CONCLUSIONS 

Field tests show that a falling weight with a mass of 
1000 kg impacting a steel plate (1 m in diameter) on 
ground consisting of 2-3 m of rockfill induces 
ground vibrations with frequency content that is 
almost independent of the soil conditions below a 
depth exceeding 2-3 m. It can be concluded that the 

dominating frequency is not strongly influenced by 
stiffness of material at larger depth. This agrees well 
with the widely appreciated conception that the 
dynamics of a vibrating footing depend on soil 
conditions to a depth of 2.5-3 times the footing 
diameter (e.g., Baidya and Krishna 2001). 
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Figure 13. Influence of bouncing for a 100 kg hammer. 
 

 
Theoretical analyses also suggest that 

components of the driving system such as hammer 
drop height and hammer mass are of minor 
importance for the frequency content of vertical 
ground vibrations.  

An interesting observation of the field tests is that 
ground vibration amplitude remains almost 
unchanged even when drop height is increased by 
nearly 100 percent. This can be explained by the fact 
that during plastic penetration, an upper limit of 
dynamic soil resistance (shear modulus at failure) is 
reached. Thus, during pile penetration, vibration 
amplitude depends on the dynamic soil resistance at 
the plate/soil interface (pile toe) and becomes at 
failure almost independent of the applied force. This 
fact has been observed previously (e.g., Andréasson 
and Hansbo 1977, and Massarsch and Fellenius 
2008). 

However, when the applied force is smaller than 
the soil ultimate resistance below the pile toe, 
penetration will decrease and can result in higher 
dynamic stiffness and thus increased ground 
vibrations (e.g., during the final seating of the pile 
on a bearing stratum). 

The above results suggest that frequencies 
generated by impact depend primarily on the 
dynamic characteristics of the weight/hammer-pile 
system and on the ground conditions immediately 
below the plate/pile toe. Whether the three meter 
thick, stiff rock fill is underlain by very soft clay or 
by dense glacial till appears to have minor influence 
on frequency content.  
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Figure 14. Influence of bouncing for a 500 kg hammer. 

 
The main difference between frequencies 

generated by a weight falling on a steel plate and 
impact pile driving is the diameter of the plate (pile). 
The influence of these geometrical differences has 
been investigated in the lumped-parameter model. 

The calibrated model shows good agreement with 
measured frequency spectra from field tests. The 
frequencies considered herein are sufficiently low to 
justify the assumption that almost no change in 
frequency content takes place between the point of 
impact and the measuring point. However, there is 
naturally a significant decrease in amplitude (thus 
explaining the large difference in the amplitude 
observed in field tests as opposed to results from 
simulations). 

Decreasing the diameter of the plate to 200 mm 
and increasing the mass to 1000 kg produces a 
system which is similar to impact pile driving. 
Reducing the diameter changes the damping in the 
system and decreases the dominating frequency. 
Furthermore, increasing hammer mass also 
decreases the dominating frequency. For a given pile 
and typical masses of pile driving hammers 
(2500-4000 kg), the dominating frequency range is 
relatively narrow. 

Bouncing of the hammer produces a spectrum 
that follows the trend of the original spectrum, but 
has a more irregular shape. The maximum amplitude 
can be affected by bouncing, but not the general 
shape of the spectrum. Bouncing effects are 
therefore considered to have minor influence on the 
frequency content. 

In order to account for the strain softening effect 
due to plate penetration, the shear wave speed 
of 200-250 m/s in the surface layer (rock fill) must 
be reduced to 100 m/s, corresponding to a mean 
wave speed reduction factor of RC = 0.44, implying a 
shear strain on the order of 10-3 to 10-2 (0.1 – 1.0 %). 
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